Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoinduced enhancement of optical second harmonic generation in LiB3O5 nanocrystallites embedded between the Ag/ITO electrodes

Identifieur interne : 000728 ( Main/Repository ); précédent : 000727; suivant : 000729

Photoinduced enhancement of optical second harmonic generation in LiB3O5 nanocrystallites embedded between the Ag/ITO electrodes

Auteurs : RBID : Pascal:13-0364204

Descripteurs français

English descriptors

Abstract

It is reported that there is substantial enhancement of the optical second harmonic generation (SHG) at 1064 nm Nd:YAG laser wavelength for LiB3O5 nanocrystatllites embedded into the electric field aligned photopolymer oligoetheracrylate matrices. The borate nanocomposite was put between the electrodes containing Ag/ZnO NP with silver sizes 20, 40 and 60 nm. We study an influence of the Ag NP sizes on the output SHG. It is clearly seen that only excitation by the green continuous wave 532 nm laser with power about 350-400 mW with beam diameter about 4 mm give significant effect. The latter confirms a principal role of the surface plasmon resonances spectrally overlapped with the nonlinear excitations responsible for the observed changes of the SHG.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0364204

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photoinduced enhancement of optical second harmonic generation in LiB
<sub>3</sub>
O
<sub>5</sub>
nanocrystallites embedded between the Ag/ITO electrodes</title>
<author>
<name sortKey="Chen, X M" uniqKey="Chen X">X. M. Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Material Chemistry, Graduate School of Engineering, Kyoto University</s1>
<s2>Nishikyo-ku, Kyoto 615-8520</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Nishikyo-ku, Kyoto 615-8520</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oyama, M" uniqKey="Oyama M">M. Oyama</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Material Chemistry, Graduate School of Engineering, Kyoto University</s1>
<s2>Nishikyo-ku, Kyoto 615-8520</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Nishikyo-ku, Kyoto 615-8520</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reben, M" uniqKey="Reben M">M. Reben</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicz Av.</s1>
<s2>30-059 Kraków</s2>
<s3>POL</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>30-059 Kraków</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wojciechowski, A" uniqKey="Wojciechowski A">A. Wojciechowski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Electrical Engineering Department, Czestochowa University of Technology, Armii Krajowej 17</s1>
<s2>Czestochowa</s2>
<s3>POL</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>Czestochowa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alzayed, N" uniqKey="Alzayed N">N. Alzayed</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Physical Department, College of Science, King Saud University, P.O. Box 2455</s1>
<s2>Riyadh 11451</s2>
<s3>SAU</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Riyadh 11451</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fedorchuk, A O" uniqKey="Fedorchuk A">A. O. Fedorchuk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies</s1>
<s2>Lviv</s2>
<s3>UKR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>Lviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kityk, I V" uniqKey="Kityk I">I. V. Kityk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Physical Department, College of Science, King Saud University, P.O. Box 2455</s1>
<s2>Riyadh 11451</s2>
<s3>SAU</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Riyadh 11451</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0364204</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0364204 INIST</idno>
<idno type="RBID">Pascal:13-0364204</idno>
<idno type="wicri:Area/Main/Corpus">000423</idno>
<idno type="wicri:Area/Main/Repository">000728</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4522</idno>
<title level="j" type="abbreviated">J. mater. sci., Mater. electron.</title>
<title level="j" type="main">Journal of materials science. Materials in electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Borates</term>
<term>Continuous wave</term>
<term>Doped materials</term>
<term>Electric field</term>
<term>Electric field effect</term>
<term>Indium oxide</term>
<term>Light sensitive polymer</term>
<term>Microelectronic fabrication</term>
<term>Nanocomposite</term>
<term>Nanocrystal</term>
<term>Nanostructured materials</term>
<term>Non linear effect</term>
<term>Optical harmonic generation</term>
<term>Photoinduced effect</term>
<term>Photolithography</term>
<term>Second harmonic generation</term>
<term>Silver</term>
<term>Surface plasmon resonance</term>
<term>Tin addition</term>
<term>YAG laser</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet photoinduit</term>
<term>Génération harmonique optique</term>
<term>Génération harmonique 2</term>
<term>Addition étain</term>
<term>Laser YAG</term>
<term>Effet champ électrique</term>
<term>Champ électrique</term>
<term>Photolithographie</term>
<term>Nanomatériau</term>
<term>Onde entretenue</term>
<term>Résonance plasmon surface</term>
<term>Effet non linéaire</term>
<term>Nanocristal</term>
<term>Oxyde d'indium</term>
<term>Polymère photosensible</term>
<term>Borate</term>
<term>Nanocomposite</term>
<term>Oxyde de zinc</term>
<term>Argent</term>
<term>Matériau dopé</term>
<term>Fabrication microélectronique</term>
<term>4265K</term>
<term>8107B</term>
<term>8540H</term>
<term>ITO</term>
<term>ZnO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is reported that there is substantial enhancement of the optical second harmonic generation (SHG) at 1064 nm Nd:YAG laser wavelength for LiB
<sub>3</sub>
O
<sub>5</sub>
nanocrystatllites embedded into the electric field aligned photopolymer oligoetheracrylate matrices. The borate nanocomposite was put between the electrodes containing Ag/ZnO NP with silver sizes 20, 40 and 60 nm. We study an influence of the Ag NP sizes on the output SHG. It is clearly seen that only excitation by the green continuous wave 532 nm laser with power about 350-400 mW with beam diameter about 4 mm give significant effect. The latter confirms a principal role of the surface plasmon resonances spectrally overlapped with the nonlinear excitations responsible for the observed changes of the SHG.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4522</s0>
</fA01>
<fA03 i2="1">
<s0>J. mater. sci., Mater. electron.</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photoinduced enhancement of optical second harmonic generation in LiB
<sub>3</sub>
O
<sub>5</sub>
nanocrystallites embedded between the Ag/ITO electrodes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHEN (X. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>OYAMA (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>REBEN (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WOJCIECHOWSKI (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ALZAYED (N.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FEDORCHUK (A. O.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KITYK (I. V.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Material Chemistry, Graduate School of Engineering, Kyoto University</s1>
<s2>Nishikyo-ku, Kyoto 615-8520</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicz Av.</s1>
<s2>30-059 Kraków</s2>
<s3>POL</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Electrical Engineering Department, Czestochowa University of Technology, Armii Krajowej 17</s1>
<s2>Czestochowa</s2>
<s3>POL</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Physical Department, College of Science, King Saud University, P.O. Box 2455</s1>
<s2>Riyadh 11451</s2>
<s3>SAU</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies</s1>
<s2>Lviv</s2>
<s3>UKR</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>4204-4208</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22352</s2>
<s5>354000507408600100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0364204</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of materials science. Materials in electronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>It is reported that there is substantial enhancement of the optical second harmonic generation (SHG) at 1064 nm Nd:YAG laser wavelength for LiB
<sub>3</sub>
O
<sub>5</sub>
nanocrystatllites embedded into the electric field aligned photopolymer oligoetheracrylate matrices. The borate nanocomposite was put between the electrodes containing Ag/ZnO NP with silver sizes 20, 40 and 60 nm. We study an influence of the Ag NP sizes on the output SHG. It is clearly seen that only excitation by the green continuous wave 532 nm laser with power about 350-400 mW with beam diameter about 4 mm give significant effect. The latter confirms a principal role of the surface plasmon resonances spectrally overlapped with the nonlinear excitations responsible for the observed changes of the SHG.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F17</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C20M</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B40B65K</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Effet photoinduit</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photoinduced effect</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Efecto fotoinducido</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Génération harmonique optique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Optical harmonic generation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Génération harmonique 2</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Second harmonic generation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Laser YAG</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>YAG laser</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Laser YAG</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Effet champ électrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Electric field effect</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Efecto campo eléctrico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Champ électrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Electric field</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Campo eléctrico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Photolithographie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Photolithography</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fotolitografía</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Onde entretenue</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Continuous wave</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Onda continua</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Résonance plasmon surface</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Surface plasmon resonance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Polymère photosensible</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Light sensitive polymer</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Polímero fotosensible</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Borate</s0>
<s2>NA</s2>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Borates</s0>
<s2>NA</s2>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Borato</s0>
<s2>NA</s2>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Nanocomposite</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Nanocomposite</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Nanocompuesto</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Plata</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>4265K</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>8540H</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé II-VI</s0>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>II-VI compound</s0>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto II-VI</s0>
<s5>13</s5>
</fC07>
<fN21>
<s1>343</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000728 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000728 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0364204
   |texte=   Photoinduced enhancement of optical second harmonic generation in LiB3O5 nanocrystallites embedded between the Ag/ITO electrodes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024